Shepherd's Lemma

$$
\begin{equation*}
e(\mathbf{p}, u)=\sum_{j=1}^{n} p_{j} x_{j}^{h}(\mathbf{p}, u) \tag{1}
\end{equation*}
$$

differentiate (1) with respect to p_{i},

$$
\begin{equation*}
\frac{\partial e(\mathbf{p}, u)}{\partial p_{i}}=x_{i}^{h}(\mathbf{p}, u)+\sum_{j=1}^{n} p_{j} \frac{\partial x_{j}^{h}}{\partial p_{i}} \tag{2}
\end{equation*}
$$

must prove : second term on right side of (2) is zero
since utility is held constant, the change in the person's utility

$$
\begin{equation*}
\Delta u \equiv \sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}} \frac{\partial x_{j}^{h}}{\partial p_{i}}=0 \tag{3}
\end{equation*}
$$

when p_{i} is changed, but the person is compensated so as to stay on the same indifference curve
from the first-order conditions for expenditure minimization

$$
\begin{equation*}
p_{j}=\mu \frac{\partial u}{\partial x_{j}} \quad j=1,2, \ldots, n \tag{4}
\end{equation*}
$$

where μ is the Lagrange multiplier
so

$$
\begin{equation*}
\sum_{j} p_{j} \frac{\partial x_{j}}{\partial p_{i}}=\mu\left[\sum_{j} \frac{\partial u}{\partial x_{j}} \frac{\partial x_{j}^{h}}{\partial p_{i}}\right]=0 \tag{5}
\end{equation*}
$$

Substituting (5) into (2) yields

$$
\begin{equation*}
\frac{\partial e(\mathbf{p}, u)}{\partial p_{i}}=x_{i}^{h}(\mathbf{p}, u) \tag{6}
\end{equation*}
$$

which is Shepherd's Lemma.

